容积式流量计-流量测量方法和仪表的选用容积式流量计又称排量流量计(positive displacement flowmeter),简称PD流量计或PDF,在流量仪表中是精度高的一类。它利用机械测量元件把流体连续不断地分割成单个已知的体积部分,根据计量室逐次、重复地充满和排放该体积部分流体的次数来测量流量体积总量。PD流量计一般不具有时间基准,为得到瞬时流量值需要另外附加测量时间的装置。定排量测
容积式流量计-流量测量方法和仪表的选用容积式流量计又称排量流量计(positive displacement flowmeter),简称PD流量计或PDF,在流量仪表中是精度高的一类。它利用机械测量元件把流体连续不断地分割成单个已知的体积部分,根据计量室逐次、重复地充满和排放该体积部分流体的次数来测量流量体积总量。PD流量计一般不具有时间基准,为得到瞬时流量值需要另外附加测量时间的装置。定排量测
流量计-涡街流量计的测量方法和选用涡街流量计-流量测量方法和仪表的选用在特定的流动条件下,一部分流体动能转化为流体振动,其振动频率与流速(流量)有确定的比例关系,依据这种原理工作的流量计称为流体振动流量计。目前流体振动流量计有三类:涡街流量计、旋进(旋涡进动)流量计和射流流量计。流体振动流量计具有以下一些特点: 1)输出为脉冲频率,其频率与被测流体的实际体积流量成正比,它不受流体组分、密度、压力
流量计的应用领域流量测量技术与仪表的应用大致有以下几个领域。 一,工业生产过程 流量仪表是过程自动化仪表与装置中的大类仪表之一,它被广泛适用于冶金、电力、煤炭、化工、石油、交通、建筑、轻纺、食品、医药、农业、环境保护及人民日常生活等国民经济各个领域,是发展工农业生产,节约能源,改进产品质量,提高经济效益和管理水平的重要工具在国民经济中占有重要的地位。在过程自动化仪表与装置中,流量仪表有两大
超声波的应用 超声效应已广泛用于实际,主要有如下几方面: ①超声检验。超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。超声成像是利用超声波呈现不透明物内部形象的技术 。把从换能器发出的超声波经声透镜聚焦在不透明试样上,从试样透出的超声波携带了被照部位的信息(如对声波的反射、吸收和散射的能力),经声透镜汇聚在压电接收
超声波传感器结构与工作原理 当电压作用于压电陶瓷时,就会随电压和频率的变化产生机械变形。另一方面,当振动压电陶瓷时,则会产生一个电荷。利用这一原理,当给由两片压电陶瓷或 一片压电陶瓷和一个金属片构成的振动器,所谓叫双压电晶片元件,施加一个电信号时,就会因弯曲振动发射出超声波。相反,当向双压电晶片元件施加超声振动 时,就会产生一个电信号。基于以上作用,便可以将压电陶瓷用作超声波传感器。 如超声波
超声波热量计(超声波热量表)是在超声波流量计基础上加配一对温度变送器而实现热量计量功能的。可循环显示正、负、净累积热量与累积流量和瞬时热量与流量计及时间、温度等值。 ●热量计算公式:热量=流量×(A11温度下的水的热焓值-A12度下的水的热焓值)●国际标准热焓值表已存于热量计中 ●超声波流量计介绍详见 固定式超声波流量计(点击进入
FV系列超声波流量计采用了窗口化软件设计,所有输入参数、仪器设置和显示测量结果统一细分为100多个独立的窗口表示,使用者通过“访问”特定的窗口即可达到输入参数、修改设置或显示测量结果的目的,窗口采用两位数字(包括+号)编号,从00~99,然后是+0、+1等。窗口号码或称窗口地址码,表示特定的含义,例如11号窗口表示输入管道外径参数,25号窗口显示探头安装距离等,见窗口详解一
热量测量值的输出(1)可以通过4-20毫安电流还输出的是瞬时热流量。在M55菜单中选择“8. 4-20毫安对应热流量”即表示电流环输出的量值代表瞬时热流量。然后再在M56窗口中输入4毫安对应的热流量值,在M57窗口中输入20毫安对应的热流量值。例如,有一应用场合,瞬时热流量范围为0~1000GJ/h,FV连接到一个使用4-20毫安信号输入的DCS控制系统中,要求瞬时热流
科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为20~20000赫兹。当声波的振动频率大于20000赫兹或小于20赫兹时,我们便听不见了。因此,我们把频率高于20000赫兹的声波称为“超声波”。通常用于医学诊断的超声波频率为1~5兆赫兹。 理论研究表明,在振幅相同的条件下,一个物体振动的能量与振动频率成正比,超声波在介质中传播时,
超声波流量计工作原理:当超声波束在液体中传播时,液体的流动将使传播时间产生微小变化,其传播时间的变化正比于液体的流速,其关系符合下面表达式: 其中 θ 为声束与液体流动方向的夹角M 为声束在液体的直线传播次数D 为管道内径Tup 为声束在正方向上的传播时间T