对改善能源三气计量手段的探讨
鉴于孔板计量的严重弊病,随着流量测量技术的发展,近十几年来,若干新型或改进型流量测量仪表已陆续进入了三气测量领域。然而,由于三气计量条件的特殊性,也由于这些仪表计量与使用性能的局限性,虽然它们在某些计量场合也取得了较好的计量效果,但就三气测量领域而言,“孔板唱主角戏”的局面一直未能改变。去年大连索尼卡公司推出了一种内文丘里管流量计,它的测量原理与应用实践表明,这种新一代差压式流量计,完全克服了孔板计量的种种弊病,对三气的计量条件具有很好的适应性。下面就几种可能取代孔板用于三气计量的测量手段予以简要分析。
1、 热(线)式气体质量流量计
恒温差式气体质量流量计,从原理上讲可以用于各种气体,包括煤气、天然气的流量测量,但实际它只适宜测量工况稳定、干燥的清洁气体,特别不适宜测量脏污和高含湿气体。
首先,测量原理决定了,被测介质的热物性差异,对测量结果影响极大。为此仪表需用实测介质进行标定。实际使用时,因被测介质组分变化而造成的使用附加误差在所难免,并难以定量评估。
其次,它不适宜测量脏污气体,气体中的含水不能太大,介质中也绝对不能出现液体。如果在实测气流中一旦出现有可能将探头敏感元件糊住的糊状物质、特别是出现水滴或其他冷凝液,因介质对敏感元件冷却效应的骤然变化,将造成难以估量的测量误差,甚至使仪表无法正常工作。
再次,传感器直接测出的是管道内某一点或某几点位置上的气体流速,将其换算成管内流体的流量时,与管内气体的流速分布状况有关——取决于雷诺数和管壁粗糙度,如采用固定不变的计算因子,由此而带来的误差也是在所难免的。
2、 阿纽巴流量计
阿纽巴(也称均速管还有其它名称)流量计的测量原理与测速毕托管完全相同,是实现了多点同时测量的毕托管,它结构简单、安装维护方便、压损小,用于大管径测量时,相对价格便宜,除用于测量水,也用于测量气体和蒸汽。
阿纽巴的测量原理及流量计算方法,决定了它不可能有理想的测量准确度(流量系数不确定度为1%),工况条件变化较大时,实际测量误差会远远超出设计标定值。流体对迎面取压孔的边缘磨损也会使流量系数逐渐发生改变,这与孔板锐边磨蚀相似,造成性能不稳定。测量脏的气体时,取压孔容易堵塞,这不但使流出系数发生改变,有时还会难以正常工作。近年来改进型的阿纽巴虽然在抗磨损、抗堵塞方面有了一定进步,但仍难以从根本上解决问题,焦炉煤气和非洁净天然气等脏污气体测量是绝对不宜使用的。阿纽巴只适用于测量介质比较干净、工况比较稳定且勿需高准确计量的场合。
3、 旋进旋涡流量计
旋进旋涡式流量计,结构简单、安装维护方便,耐用并可测高含湿气体和其他较脏污的气体,但测量精度较低,不含温度、压力修正为1.5%左右。旋进旋涡由于有螺旋形叶片构成的起旋器,气体流过起旋器造成的压损太大,工况压力低、对压损要求较严的场合不便使用:其次测量的气体流速不能太低,否则起旋器不能起动会形成测量盲区(目前用于天然气计量的旋进旋涡流量计就存在着小流量不计量的计量缺陷)。用于测量煤气等脏污气体时,污物有可能在起旋器中积垢和将振动频率检测器糊住也是一个很大的问题。
4、涡街流量计
涡街流量计结构简单、安装维护方便,测量精度(不含温度、压力修正),液体为0.5-1%,气体、蒸汽为1-1.5%,量程比较宽,一般为20:1,近几年来涡街用于测量蒸汽,在DN200mm以下,发展较快,也有将其用于天然气计量的。
涡街流量计使用的局限性主要有以下几点:
(1) 受检测原理限制,要求测量的流动雷诺数下限较高,气体流速一般应大于4m/s,流速低了测量精度降低甚至会造成小流量不计量。再有,在靠近强烈振动场的环境下,工作可靠性也有问题。
(2) 受检测原理限制,测量管径不能太大(大管径在较低流速下,振动旋涡频率过低会造成频率信号丢失,目前制造厂家成熟技术的产品,均在DN300mm以下),受信号检测器耐温能力限制,被测介质温度不能太高,宜在350℃以下。
(3) 不适宜测量煤气、非洁净天然气等可能对频率信号检测器造成严重污染的脏污流体。
(4) 对入口管路直管段长度的要求高(稍高于孔板的要求),达不到安装条件则要产生较大的附加测量误差。
5、气体涡轮流量计
精密气体涡轮流量计具有0.2-0.5%的测量精度,可用于各种清洁气体,包括洁净天然气的计量,国外也有将其用于天然气贸易结算计量的。
由于涡轮流量计的测量元件是转动的叶轮,并使用了轴承,故要求所测流体必须洁净,在使用过程中还应勤于校准。显然,涡轮流量计用于非洁净天然气和煤气的计量是不可行的,用于洁净天然气的计量时,必须保证气体清洁,用于新开通不久的天然气管道时,因管路不干净,涡轮流量计往往难以保持正常运转。
6、气体超声波流量计
气体超声波流量计近几年在国外有了较快的发展,并已开始试用于中大管径天然气的贸易结算计量,我国对DN200mm-400mm的进口气体超声流量计也有了少量的试用。中大口径的多声道气体超声流量计,精度可优于0.5%,但价格过于昂贵,计量的可靠性也有待于实践的检验。较小口径的单声道气体超声流量计测量精度偏低,价格不便宜。
除价格问题以外,气体超声流量计在使用条件上也有其局限性,主要是;
(1) 被测气体必须清洁,保证不能对探头造成污染,所以它不宜用作煤气和非洁净天然气的计量。
(2) 被测气体的密度及管内操作压力不能太低,。较大管径时尤为如此,所以它也不宜用于低压大管道气体的计量。
(3) 在具有高频振动噪声的场合,超声流量计有时会不能正常工作。
综上,从性能、价格两方面考虑,在我国将多声道气体超声流量计逐步地用于大管径和较大管径的清洁天然气的贸易结算计量具有一定的现实性,但是要将其普遍用于天然气的集输与工业用气计量则是不实现的。
7、 弯头流量计
弯头流量计又称弯管流量计,它是利用流体通过弯头弧形通道时在弯头外侧半径与内侧半径之间形成的静压力差(差压)与平均流速之间的定量关系而测量流体流量,因而也是一种差压式流量计,多用于测量气体。近几年来在我国有了一定的发展。弯头流量计具有结构简单、性能稳定、重复性好、价格便宜等优点,其主要缺点是测量精度低,流量系数不确定度一般为4%,且不宜测量低压低流速流体。弯头流量计测量精度低是由其测量原理决定的:流体在弯头处的流场速度分布异常复杂,且易老化,流量系数对流动雷诺数及管壁粗糙度的变化非常敏感,流体流入弯道前的非轴对称速度分布对流量系数的影响也远大于标准孔板。另外,用于测量气体时,取压截面上的密度变化如何修定,也是一个难以确切掌握的变量。对流量系数实流标定并采用计算机软件修正技术,可以提高弯头流量计的测量精度,但是,除了雷诺数变化便于动态修正以外,上述其它变量因素都很难用软件的修正方法予以解决。从理论上说,如用实测介质在实测工况范围内进行实流标定实际测量时,再按标定结果回归出的经验公式进行实时修正,这样可获得满意的测量精度,然而,就一般的工业计量而言,这往往是难以办到的。因此,弯头流量计只适合用于工况变化幅度不大、对测量精度要求不高、能有较好测量重复性即可的场合。